Mobile Robot Forward Kinematics

Forward Kinematics : Differential Drive

what is the position of the ICC in $\{\mathrm{W}\}$?

Forward Kinematics : Differential Drive

Forward Kinematics : Differential Drive

- assuming smooth rolling motion at each point in time the differential drive is moving in a circular path centered on the ICC
thus, for a small interval of time δt the change in pose can be computed as a rotation about the ICC

Forward Kinematics : Differential Drive

- computing the rotation about the ICC

1. translate so that the ICC moves to the origin of $\{W\}$
2. rotate about the origin of $\{W\}$
3. translate back to the original ICC

Forward Kinematics : Differential Drive

- computing the rotation about the ICC
translate so that the ICC moves to the origin of $\{\mathrm{W}\}$

2. rotate about the origin of $\{\mathrm{W}\}$
3. translate back to the original ICC

$$
\begin{aligned}
& I C C=\left[\begin{array}{l}
x-R \sin \theta \\
y+R \cos \theta
\end{array}\right]=\left[\begin{array}{l}
I C C_{x} \\
I C C_{y}
\end{array}\right] \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]-\left[\begin{array}{l}
I C C_{x} \\
I C C_{y}
\end{array}\right]=\left[\begin{array}{l}
x-I C C_{x} \\
y-I C C_{y}
\end{array}\right]}
\end{aligned}
$$

Forward Kinematics : Differential Drive

- computing the rotation about the ICC

1. translate so that the ICC moves to the origin of $\{W\}$
2. rotate about the origin of $\{\mathrm{W}\}$
3. translate back to the original ICC
how much rotation over the time interval?
angular velocity * elapsed time $=\omega \delta t$

$$
\left[\begin{array}{cc}
\cos (\omega \delta t) & -\sin (\omega \delta t) \\
\sin (\omega \delta t) & \cos (\omega \delta t)
\end{array}\right]\left[\begin{array}{c}
x-I C C_{x} \\
y-I C C_{y}
\end{array}\right]
$$

Forward Kinematics : Differential Drive

- computing the rotation about the ICC
translate so that the ICC moves to the origin of $\{\mathrm{W}\}$

2. rotate about the origin of $\{\mathrm{W}\}$
3. translate back to the original ICC

$$
\left[\begin{array}{l}
x(t+\delta t) \\
y(t+\delta t)
\end{array}\right]=\left[\begin{array}{cc}
\cos (\omega \delta t) & -\sin (\omega \delta t) \\
\sin (\omega \delta t) & \cos (\omega \delta t)
\end{array}\right]\left[\begin{array}{c}
x-I C C_{x} \\
y-I C C_{y}
\end{array}\right]+\left[\begin{array}{c}
I C C_{x} \\
I C C_{y}
\end{array}\right]
$$

Forward Kinematics : Differential Drive

- what about the orientation $\theta(t+\delta t)$?
- just add the rotation for the time interval
- new pose

$$
\begin{aligned}
{\left[\begin{array}{l}
x(t+\delta t) \\
y(t+\delta t)
\end{array}\right] } & =\left[\begin{array}{cc}
\cos (\omega \delta t) & -\sin (\omega \delta t) \\
\sin (\omega \delta t) & \cos (\omega \delta t)
\end{array}\right]\left[\begin{array}{c}
x-I C C_{x} \\
y-I C C_{y}
\end{array}\right]+\left[\begin{array}{c}
I C C_{x} \\
I C C_{y}
\end{array}\right] \\
\theta(t+\delta t) & =\theta+\omega \delta t
\end{aligned}
$$

- which can be written as

$$
\left[\begin{array}{c}
x(t+\delta t) \\
y(t+\delta t) \\
\theta(t+\delta t)
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\omega \delta t) & -\sin (\omega \delta t) & 0 \\
\sin (\omega \delta t) & \cos (\omega \delta t) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x-I C C_{x} \\
y-I C C_{y} \\
\theta
\end{array}\right]+\left[\begin{array}{c}
I C C_{x} \\
I C C_{y} \\
\omega \delta t
\end{array}\right]
$$

Forward Kinematics: Differential Drive

- the previous equation is valid if $v_{L} \neq v_{R}$
- i.e., if the differential drive is not travelling in a straight line
- if $v_{L}=v_{R}=v$ then

$$
\left[\begin{array}{l}
x(t+\delta t) \\
y(t+\delta t) \\
\theta(t+\delta t)
\end{array}\right]=\left[\begin{array}{c}
x+v \delta t \cos \theta \\
y+v \delta t \sin \theta \\
\theta
\end{array}\right]
$$

Sensitivity to Wheel Velocity

$$
\begin{aligned}
& v_{r}(t)=1+\mathcal{N}\left(0, \sigma^{2}\right) \\
& v_{\ell}(t)=1+\mathcal{N}\left(0, \sigma^{2}\right) \\
& \theta(0)=0 \\
& t=0 \ldots 10 \\
& \ell=0.2
\end{aligned}
$$

Sensitivity to Wheel Velocity

given the forward kinematics of the differential drive it is easy to write a simulation of the motion
b we need a way to draw random numbers from a normal distribution

- in Matlab
- randn(n) returns an n -by-n matrix containing pseudorandom values drawn from the standard normal distribution
- see mvnrnd for random values from a multivariate normal distribution

Sensitivity to Wheel Velocity

```
POSE = []; % final pose of robot after each trial
sigma = 0.01; % noise standard deviation
L = 0.2;
dt = 0.1;
TRIALS = 1000;
% distance between wheels
% time step
% number of trials
```

for trial = 1:TRIALS
-run each trial-
see next slide
end

Sensitivity to Wheel Velocity

```
vr = 1;
vl = 1;
pose = [0; 0; 0];
% initial right-wheel velocity
% initial left-wheel velocity
% initial pose of robot
```

for $t=0: d t: 10$
-move the robot one time step -
see next slide
end
POSE = [POSE pose]; \% record final pose after trial t

Sensitivity to Wheel Velocity

```
theta = pose(3);
if vr == vl
    pose = pose + [vr * cos(theta) * dt;
                        vr * sin(theta) * dt;
                        0];
else
    omega = (vr - vl) / L;
    R = (L / 2) * (vr + vl) / (vr - vl);
    ICC = pose + [-R * sin(theta);
            R * cos(theta);
            0];
    pose = rz(omega * dt) * (pose - ICC) + ICC +
        [0; 0; omega * dt];
end
vr = 1 + sigma * randn(1);
vl = 1 + sigma * randn(1);
```

